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Abstract
Semi-supervised clustering techniques have emerged as valu-
able tools for leveraging prior information in the form of con-
straints to improve the quality of clustering outcomes. De-
spite the proliferation of such methods, the ability to seam-
lessly integrate various types of constraints remains limited.
While structural entropy has proven to be a powerful cluster-
ing approach with wide-ranging applications, it has lacked a
variant capable of accommodating these constraints. In this
work, we present Semi-supervised clustering via Structural
Entropy (SSE), a novel method that can incorporate differ-
ent types of constraints from diverse sources to perform both
partitioning and hierarchical clustering. Specifically, we for-
mulate a uniform view for the commonly used pairwise and
label constraints for both types of clustering. Then, we de-
sign objectives that incorporate these constraints into struc-
tural entropy and develop tailored algorithms for their opti-
mization. We evaluate SSE on nine clustering datasets and
compare it with eleven semi-supervised partitioning and hi-
erarchical clustering methods. Experimental results demon-
strate the superiority of SSE on clustering accuracy with
different types of constraints. Additionally, the functionality
of SSE for biological data analysis is demonstrated by cell
clustering experiments conducted on four single-cell RNA-
seq datasets.
Keywords: Semi-Supervised Clustering, Structural
Entropy, Biological Data Analysis.

1 Introduction
Clustering is a key technique in machine learning that
aims to group instances according to their similarity [8].
Yet, unsupervised clustering alone often fails to provide
the desired level of accuracy and may not meet the di-
verse requirements of various users. In contrast, semi-
supervised clustering harnesses the power of prior infor-
mation in the form of constraints, significantly boosting
clustering accuracy and aligning more effectively with
user preferences [18].
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Numerous semi-supervised clustering methods
based on different classical unsupervised clustering
methods have been proposed in recent years. The chal-
lenges of semi-supervised clustering are 1) to design an
objective function integrating constraints into cluster-
ing methods and 2) to effectively and efficiently opti-
mize the objective. The most widely-used way to uti-
lize the prior information is to add a regularization on
the original clustering objective [12, 18]. Alternatively,
some methods propagate this information to augment
the dataset itself [14, 16]. The provided prior informa-
tion can manifest in various constraint forms, such as
pairwise constraints [24], and label constraints [17], and
triplet constraints [31]. Many existing semi-supervised
clustering methods are tailored to handle a single type
of constraint. Yet, it is common for prior information
to come in diverse forms from multiple sources. The
lack of ability to deal with different types of constraints
limits the generalization ability of these methods.

Concerning the integration of different types of
constraints into the semi-supervised clustering methods,
earlier methods [7, 26] discuss them case by case with
different algorithms. However, these methods lack a
unified view of constraints and are unable to deal with
mixed types of constraints. Bai et al. resolved this
issue via a unified formulation of pairwise constraints
and label constraints [1] and proposed the SC-MPI
algorithm to optimize them simultaneously. However,
SC-MPI, which is designed for partitioning clustering,
cannot perform hierarchical clustering and thus has
limited generalization ability. Hierarchical clustering
does not require specifying the number of clusters in
advance, and it produces a dendrogram that shows the
nested structure of the data. This is useful for many
applications, such as finding cell subtypes in biological
data analysis [5].

To address aforementioned issues, we propose a
more general Semi-supervised clustering method via
Structural Entropy with different constraints, namely
SSE, for both partitioning clustering and hierarchical
clustering. First, we construct a data graph G and a
relation graph G′ sharing the same set of vertices to
represent the information of input data and prior infor-
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mation in constraints, respectively. Vertices and edge
weights of G are data points and similarities between
them, respectively. Different types of constraints are
formulated as a uniform view and stored in G′ with pos-
itive edge weights representing must-link relationships
and negative weights representing cannot-link relation-
ships between data points. Second, we devise the ob-
jective of two-dimensional (2-d) SSE for semi-supervised
partitioning clustering by adding a penalty term to the
objective of 2-d structural entropy and then optimize
it through two modified operators merging and mov-
ing. Third, we devise the objective of high-dimensional
(high-d) SSE for semi-supervised hierarchical cluster-
ing by extending the objective of 2-d SSE, and then
optimize it through two modified operators stretching
and compressing. A binary encoding tree is obtained by
stretching and an encoding tree with a certain height is
obtained by compressing. The source code is available
on GitHub1.

We comprehensively evaluate SSE regarding semi-
supervised clustering methods with respect to two types
of constraints. The results justify the better perfor-
mance of SSE under both types of constraints. We
also conduct experiments on four single-cell RNA-seq
datasets to perform cell clustering, demonstrating the
functionality of SSE for biological data analysis. The
main contributions of this paper are summarized as fol-
lows: (1) We devise a uniform formulation for pair-
wise constraints and label constraints and use them in
a penalty term to form the objective of SSE. (2) We
design efficient algorithms to optimize the objective of
SSE to enable semi-supervised partitioning clustering
and hierarchical clustering. (3) The extensive experi-
ments on nine clustering datasets and four single-cell
RNA-seq datasets indicate that SSE achieves the best
performance among semi-supervised clustering methods
and is effective for biological data analysis.

2 Structural Entropy
We provide a brief introduction to structural entropy
[15] before presenting our model. Intuitively, struc-
tural entropy methods encode tree structures via char-
acterizing the uncertainty of the hierarchical topology.
The structural entropy of a graph G is defined as the
minimum total number of bits required to determine
the codewords of nodes in G. Structural entropy has
achieved success in the field of traffic forecast [32], social
event detection [3], and reinforcement learning [29, 30].
Through minimizing the structural entropy of a given
graph G, the hierarchical clustering result of vertices in
G is retained by the associated encoding tree.

1https://github.com/SELGroup/SSE

Encoding tree. Let G = (V,E,W) be an undirected
weighted graph, where V = {v1, ..., vn} is the vertex set,
E is the edge set, and W ∈ Rn×n is the edge weight
matrix. The encoding tree T of G as a hierarchical
rooted tree is defined as follows: (1) For each tree node
α ∈ T , a vertex subset Tα ∈ V is associated with it.
(2) The root node λ of T is associated with the vertex
set V , i.e., Tλ = V . (3) For each α ∈ T , the immediate
successors of it are labeled by α∧⟨i⟩ ordered from left
to right as i increases, and the immediate predecessor
of it is written as α−. (4) For each α ∈ T with L
immediate successors, vertex subsets Tα∧⟨i⟩ are disjoint
and Tα = ∪L

i=1Tα∧⟨i⟩. (5) For each leaf node ν ∈ T , Tν

contains only one vertex in V .
K-D Structural Entropy. Given an arbitrary rooted
encoding tree T of a graph G, the structural entropy of
G on T measures the amount of remaining complexity
in G after reduced by T . For each non-root node α ∈ T ,
the assigned structural entropy of it is defined as:

(2.1) HT (G;α) = − gα
VG

log2
Vα

Vα−
,

where gα is the cut, i.e., the weight sum of edges between
nodes in and not in Tα, Vα and VG are the volumes, i.e.,
the sum of node degrees in Tα and G, respectively. The
structural entropy of G given by T is defined as:

(2.2) HT (G) =
∑

α∈T ,α ̸=λ

HT (G;α).

To meet the requirements of downstream applications,
the K-dimensional structural entropy of G is defined as:

(2.3) HK(G) = min
T

{HT (G)},

where T ranges over all encoding trees whose heights
are at most K.
2-D Structural Entropy. One special case of K-
d structural entropy is 2-d structural entropy, where
the encoding tree represents a graph partitioning. A
2-d encoding tree T can be formulated as a graph
partitioning P = {X1, X2, ..., XL} of V , where Xi is
a vertex subset called module associated with the i-th
children of root λ. The structural entropy of G given
by P is defined as:

(2.4)

HP(G) = −
∑
X∈P

∑
vi∈X

gi
VG

log2
di
VX

−
∑
X∈P

gX
VG

log2
VX

VG
,

where di is the degree of vertex vi, gi is the cut, i.e., the
weight sum of edges connecting vi and other vertices, VX
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and VG are the volumes, i.e., the sum of node degrees in
module X and graph G, respectively, and gX is the cut,
i.e., the weight sum of edges between vertices in and not
in module X.

3 Methodology
In this section, we present the proposed SSE algorithm
for semi-supervised clustering. The framework of SSE
is depicted in Figure 1. SSE has three components:
graph construction, semi-supervised partitioning clus-
tering, and semi-supervised hierarchical clustering. In-
put data and constraints are transformed into two dif-
ferent graphs sharing the same vertex set and then used
to perform semi-supervised partitioning clustering and
semi-supervised hierarchical clustering through 2-d SSE
and high-d SSE minimization, respectively.

3.1 Uniform Formulation of Constraints. Con-
sidering a graph G = (V,E,W) associated to a given
dataset X = {x1, x2, ..., xn}, where xi is a data point,
V = {v1, v2, ..., vn} correspond to data points in X , the
edges in E connect similar data points, and edge weights
in W represent similarity of data points. We aim to
partition graph vertices in G with certain given prior
information in the form of constraints to achieve semi-
supervised data clustering. The pairwise constraints
and label constraints are formulated as follows.

Pairwise constraints reveal the relationship between
a pair of vertices in G. They consist of a set of must-
link constraints M = {(vi, vj): li = lj}, indicating that
vertex pair (vi, vj) must belong to the same cluster,
and a set of cannot-link constraints C = {(xi, xj): li ̸=
lj}, indicating that vertex pair (vi, vj) must belong to
different clusters, where li is the cluster indicator of vi.
Pairwise constraints can be stored in a relation graph
G′ = (V,E′,W′), which shares the same vertex set with
G. If there exists a vertex pair (vi, vj) ∈ M , an edge
exists in E′ with a positive value γM added to the edge
weight W′

ij . If there exists a vertex pair (vi, vj) ∈ C,
an edge exists in E′ with a negative value γC added to
the edge weight W′

ij . The values of W and W′ are set
in Implementation Details in Section 4.

Label constraints reveal the relationship between
vertices in G and ground truth class labels. They
include a set of positive-label constraints P =
{(vi, ym): vi ∈ ym}, indicating that the true class la-
bel of vi is ym, and a set of negative-label constraints
N = {(vi, ym): vi /∈ ym}, indicating that the true class
label of vi is not ym. To form a uniform representation
of constraints, we convert label constraints into pairwise
constraints which are more compatible for structural en-
tropy. For two vertices vi and vj , the conversion rules
are set as follows: (1) If they both have positive con-

straints with the same label, an edge exists in E′ with
a positive value γM added to the edge weight W′

ij . (2)
If they both have positive constraints with different la-
bels, an edge exists in E′ with a negative value γC added
to the edge weight W′

ij . (3) If they have positive con-
straint and negative constraints respectively with the
same label, an edge exists in E′ with a negative value
γC added to the edge weight W′

ij .
The constraints are stored in the relation graph G′

after construction, where a positive value indicates a
must-link relationship and a negative value indicates a
cannot-link relationship. However, this relation graph
can be further improved by exploiting constraint transi-
tivity and entailment [23]. We apply them sequentially
on G′ after constructing it.

3.2 2-D SSE. In this subsection, we present 2-d
SSE modified from 2-d structural entropy to perform
semi-supervised partitioning clustering. For a graph G
associated with a data set X with different types of
constraints, we transform all types of constraints into
a uniform formulation and store them in a relation
graph G′. We aim to find a graph partitioning P of
G that minimizes the structural entropy of G while
also minimizing the number of violated constraints in
the meantime. The optimization objective of two-
dimensional structural entropy is defined as follows:

(3.5) LP(G,G′) = HP(G) + ϕEP(G,G′),

where EP(G,G′) is a penalty term for constraints vio-
lation, and it is defined as:

(3.6) EP(G,G′) = −
∑
X∈P

g′X
VG

log2
VX

VG
,

where g′X is the weight sum of edges in G′ between
vertices in and not in module X, and other notations
share the same meaning with notations in Eq. (2.4).

The intuition of the penalty term is that we modify
gX , i.e., the cut of module X in Eq. (2.4) according
to the constraints, which is increased when must-link
constraints are violated, and decreased when cannot-
link constraints are satisfied. A positive value of W′

ij in
G′ means vi and vj should belong to the same module,
and EP > 0 if they are not, leading to a penalty added
to LP . A negative value of W′

ij in G′ means vi and
vj should belong to different modules, and EP < 0
if they are, leading to a reward added to LP . When
no constraint exists, i.e., EP = 0, we only minimize
unsupervised 2-d structural entropy. In all, EP penalizes
modules that violate must-link constraints and rewards
modules that satisfy cannot-link constraints.
Minimizing 2-D SSE. We minimize 2-d SSE via two
operators merging [15] and moving on the encoding tree
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Initial encoding tree

Binary tree Tb K-dimensional tree TK

II. Semi-supervised partitioning clustering

Two-dimensional tree Tp2
Input data
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Pairwise constraints Label constraints Relation graph G' 
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Moving
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III. Semi-supervised hierarchical clustering
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Figure 1: Overview of SSE. (I) Two graphs G and G′ are constructed from input data and constraints, respectively.
(II) Semi-supervised partitioning clustering is performed through two operators merging and moving. (III) Semi-
supervised hierarchical clustering is performed through two operators stretching and compressing.

T . For two sister nodes α, β ∈ T with associated vertex
subsets X and Y , node merging is defined as: (1) set
X = X ∪ Y , (2) delete β. The decrease amount of
LP(G,G′) is given by:

∆LM
X,Y =

1

VG
[(VX − gX − g′X) log2 VX

+(VY − gY − g′Y ) log2 VY

− (VX∪Y − gX∪Y − g′X∪Y ) log2 VX∪Y

+(gX + gY − gX∪Y + g′X + g′Y − g′X∪Y ) log2 VG],

(3.7)

where M denotes Merging operator, VX is the volume
of X in G, VG is the volume of G, gX and g′X are the
cuts of X in G and G′, respectively. For a node α ∈ T
with associated module X and a vertex vi ∈ X, the
moving operator seeks to find a new node β ∈ T with
associated module Y and move vi from X to Y . The
decrease amount of LP(G,G′) by removing vi from X
is given by:

∆LR
X,vi

=
VX − gX − g′X

VG
log2

VX

VG

−
VX\{vi} − gX\{vi} − g′X\{vi}

VG
log2

VX\{vi}

VG
,

(3.8)

where R denotes vertex Removing and X\{vi} denotes
removing vertex vi from X. The increase amount of
LP(G,G′) by inserting vi into Y is given by:

∆LI
Y,vi = −VY − gY − g′Y

VG
log2

VY

VG

+
VY ∪{vi} − gY ∪{vi} − g′Y ∪{vi}

VG
log2

VY ∪{vi}

VG
,

(3.9)

where I denotes vertex Inserting and Y ∪ {vi} denotes
inserting vi into Y . We initialize T to contain a

Algorithm 1 2-d SSE minimization
Input: G = (V,E,W), G′ = (V,E′,W′)
Output: Encoding tree T and partitioning P
1: Initialize T containing all vertices as tree leaves
2: // Merging stage
3: repeat
4: Merge a chosen module pair (X,Y ) into X ∪ Y

condition on argmaxX,Y {∆LM
X,Y } via Eq. (3.7)

5: Update ∆LM for module pairs connected to X or
Y

6: until ∆LM < 0 for all module pairs
7: // Moving stage
8: repeat
9: for each vertex vi ∈ V do

10: Remove vertex vi from the original module X
11: Insert node vi into a chosen module Y condition

on argmaxY {∆LR
X,vi

−∆LI
Y,vi

} via Eqs. (3.8)
and (3.9)

12: end for
13: until LP(G,G′) converges

root node λ and n leaves where each leaf is associated
with one vertex in G, and then sequentially apply
merging and moving operators until convergence. The
optimization procedure is summarized in Algorithm 1.

In both merging stage and moving stage, LP de-
creases after every iteration, and it converges when no
improvement can be made. The time complexity of
merging stage is O(nlog2 n) [15]. In the moving stage,
each iteration requires calculating ∆LR

X,vi
and ∆LI

Y,vi

for every vertex vi and every possible module Y , which
takes the time of O(nl). Taken together, the time com-
plexity of Algorithm 1 is O(n log2 n + nlt), where n, l
and t denote the number of vertices, modules, and iter-
ations respectively.
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3.3 High-D SSE. Hereafter, we generalize 2-d SSE
into high-d SSE to perform semi-supervised hierarchical
clustering. For a graph G associated with data set X
and constraints stored in a relation graph G′, we aim to
find an encoding tree with the height of K > 2 to form
a semi-supervised hierarchical clustering of vertices in
G. Following the definition of 2-d SSE in Section 3.2,
we define the optimization objective of high-d SSE as
follows:

(3.10) LT (G,G′) = HT (G) + ϕET (G,G′),

where ET (G,G′) is a penalty term for constraints vio-
lation, and it is defined as:

(3.11) ET (G,G′) =
∑

α∈T ,1<|T (α)|<|V |

− g′α
VG

log2
Vα

Vα−
,

where g′α is the cut of α in G′, |T (α)| is the number
of vertices in subset T (α) associated to α, and other
notations share the same meaning with notations in Eq.
(2.1). For each node except for leaves in T , the penalty
term penalizes the violation of must-link constraints and
rewards the satisfaction of cannot-link constraints.
Minimizing High-D SSE. We minimize high-d SSE
via two operators stretching and compressing on the
encoding tree T [19]. For a pair of sister nodes (α, β) ∈
T whose parent is γ, node stretching is defined as
inserting a new node δ between γ and (α, β), i.e., (1)
set α− = δ, (2) set β− = δ, (3) set δ− = γ. The
decrease amount of LT (G,G′) is given by:

∆LS
α,β =

gα + gβ − gδ + g′α + g′β − g′δ
VG

log2
Vγ

Vδ
,(3.12)

where S denotes node Stretching. Applying stretching
on the initial encoding tree iteratively results in a binary
encoding tree Tb. For a node α ∈ T contains a
set of children {β1, ..., βm} and its parent is γ, node
compressing is defined as: (1) remove node α, (2) for
each child node βi of α, set β−

i = γ. The decrease
amount of LT (G,G′) is given by:

∆LC
α =

∑
i

gβi +
∑

|T (βi)|>1

g′βi
− gα − g′α

VG
log2

Vα

Vγ
,

(3.13)

where C denotes node Compressing. Applying compress-
ing on the binary encoding tree results in a multinary
encoding tree. By restricting the height of the encoding
tree to be less than the required height K, we can obtain
the K-d encoding tree. We summarize this optimization
procedure in Algorithm 2. For a graph G with n ver-
tices and m edges, the time complexity of Algorithm 2
is O(hmax(mlogn+n)), where hmax is the height of Tb.

Algorithm 2 High-d SSE minimization
Input: G = (V,E,W), G′ = (V,E′,W′), height K
Output: Binary tree Tb and height K tree TK
1: Initialize T with a root node λ and all vertices as

tree leaves
2: // Stretching stage
3: repeat
4: Stretch a chosen node pair {α, β} condition on

argmaxα,β{∆LS
α,β} via Eq. (3.12)

5: Update ∆LS for node pairs connected to α or β
6: until The children number of λ is two, resulting in

binary tree Tb
7: // Compressing stage
8: repeat
9: Remove a chosen tree node α ∈ T condition on

argmaxα{∆LC
α} via Eq. (3.13)

10: until Height of encoding tree T is not larger than
K, resulting in TK

4 Experiments
Our proposed SSE method is capable of tackling both
semi-supervised partitioning clustering and hierarchical
clustering. Regarding the evaluation for both tasks,
we design two groups of experiments, in which we
compare SSE against established baselines for semi-
supervised partitioning clustering (Section 4.1) and
semi-supervised hierarchical clustering (Section 4.2).

4.1 Semi-Supervised Partitioning Clustering.
In this part, we aim to evaluate the performance of
SSE on semi-supervised partitioning clustering. We
conduct experiments on five clustering datasets includ-
ing face image data (Yale and ORL), object image data
(COIL20), spoken letter recognition data (Isolet), and
handwritten digit data (OpticalDigits) following Bai et
al. [1], whose size ranges from 165 to 5620. We also con-
duct experiments on four single-cell RAN-seq datasets
including 10X PBMC, Mouse bladder, Worm neuron,
and Human kidney taken from Tian et al. [22]. We
choose the data preprocessed by the original authors to
contain 2100 randomly sampled cells on the top 2000
highly dispersed genes in each dataset. We adopt two
metrics including Adjusted Rand Index (ARI) [10] and
Normalized Mutual Information (NMI) [21] for parti-
tioning clustering performance evaluation. All experi-
ments are repeated 10 times.
Baselines. We compare SSE with a variety of base-
line methods, including an unsupervised clustering
method based on structural entropy minimization, three
semi-supervised clustering methods with pairwise con-
straints, three semi-supervised clustering methods with
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Table 1: Performance of comparison methods for partitioning clustering on five clustering datasets. Bold: the
best performance on each group of methods.

Method% Yale ORL COIL20 Isolet OpticalDigits
ARI↑ NMI↑ ARI↑ NMI↑ ARI↑ NMI↑ ARI↑ NMI↑ ARI↑ NMI↑

SE 28.12 54.78 59.15 85.31 68.22 86.34 56.01 83.14 69.89 79.69

P
ai

rw
is

e PCPSNMF 24.80 54.11 52.02 81.86 51.49 80.75 38.39 69.15 48.82 68.71
OneStepPCP 25.50 52.22 40.58 78.14 52.81 79.70 49.93 76.01 77.90 86.02
CMS 07.06 35.54 29.37 73.18 59.81 78.32 48.77 77.38 88.75 91.17
SC-MPI 32.76 59.82 49.28 82.29 59.89 82.83 47.16 72.75 52.39 71.35
SSE (Ours) 37.12 61.37 65.42 87.51 75.36 87.50 61.37 82.77 77.57 84.34

La
be

l

Seeded-KMeans 25.21 52.06 46.35 78.56 67.59 81.40 66.48 81.13 73.52 77.89
S4NMF 23.85 49.60 47.23 77.08 62.48 79.34 57.05 77.32 84.72 88.32
LpCNMF 13.35 39.67 32.55 70.01 74.72 88.78 59.24 81.89 90.77 93.80
SC-MPI 20.91 50.82 26.28 70.73 89.18 94.21 64.43 80.38 93.04 93.41
SSE (Ours) 33.48 58.62 61.26 86.01 75.10 87.63 58.62 83.13 76.60 84.12

Table 2: Performance of comparison methods for partitioning clustering on four RNA-seq datasets. Bold: the
best performance on each group of methods.

Method% 10X PBMC Mouse bladder Worm neuron Human kidney
ARI↑ NMI↑ ARI↑ NMI↑ ARI↑ NMI↑ ARI↑ NMI↑

SE 63.89 74.80 67.41 77.13 20.90 41.70 54.20 72.86

P
ai

rw
is

e PCPSNMF 16.41 29.68 13.55 40.02 09.45 21.48 13.46 28.66
OneStepPCP 43.08 58.29 44.51 64.86 19.39 44.42 40.21 55.26
CMS 08.58 10.40 08.28 10.56 00.27 01.40 07.18 12.26
SC-MPI 20.24 30.57 18.70 40.88 08.98 17.03 18.12 31.78
SSE (Ours) 74.87 76.84 62.33 74.70 22.17 45.05 62.59 75.81

La
be

l

Seeded-KMeans 67.56 71.07 38.40 62.63 07.07 34.24 17.19 39.74
S4NMF 18.28 28.20 26.27 43.79 08.90 15.54 24.33 39.07
LpCNMF 44.40 62.94 44.64 73.02 34.67 56.37 45.90 64.88
SC-MPI 48.28 63.34 38.65 55.23 37.82 46.58 56.93 60.36
SSE (Ours) 74.15 77.05 63.11 75.38 28.43 46.94 65.45 78.23

label constraints, and one semi-supervised clustering
method with both pairwise constraints and label con-
straints. The unsupervised clustering based on struc-
tural entropy minimization is optimized by the merg-
ing operator (SE [15]). For semi-supervised clustering
methods with pairwise constraints, we consider pair-
wise constraint propagation-induced symmetric NMF
(PCPSNMF [25]), jointly optimized pairwise constraint
propagation and spectral clustering (OneStepPCP [11]),
and constrained mean shift clustering (CMS [20]). For
semi-supervised clustering methods with label con-
straints, we consider seeded semi-supervised KMeans
(Seeded-KMeans [2]), self-supervised semi-supervised
NMF (S4NMF [4]), and label propagation based con-
strained NMF (LpCNMF [17]). SC-MPI [1] is a semi-
supervised spectral clustering method capable of deal-
ing with different types of constraints. Since SSE and

SC-MPI are capable of dealing with both pairwise con-
straints and label constraints, they are compared in
both groups.
Implementation Details. We construct graph G
from the given dataset X by calculating the similarity
between data points and then sparsify it into a p-
nearest-neighbor graph by retaining p most significant
edges from each node. For a given X with n data
points divided into k clusters according to the ground
truth, we empirically set p to be ⌊20k/ log22 n⌋ + 1,
since the number of clusters by minimizing HP is
approximately Θ(p log22 n) [15]. For five clustering
datasets, the similarity is defined by a Gaussian kernel
with kernel width σ = 10. For four single-cell RNA-seq
datasets, the similarity is defined as cosine similarity
since the features of these datasets are sparse.

We generate constraints using the ground truth
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Table 3: Performance of comparison methods for semi-supervised hierarchical clustering. Bold: the best
performance on each group of methods.

Method% Wine Heart Br. Cancer Australian
DP↑ ARI↑ NMI↑ DP↑ ARI↑ NMI↑ DP↑ ARI↑ NMI↑ DP↑ ARI↑ NMI↑

SE 84.87 73.85 74.19 61.97 07.70 21.30 95.75 88.00 80.93 57.02 01.95 08.03
SpecWRSC 84.87 76.94 77.10 70.13 33.13 29.23 95.68 88.55 81.57 54.92 -00.78 01.21

COBRA 86.50 81.26 80.07 64.12 26.07 20.92 92.23 82.38 72.41 66.55 32.03 24.61
SemiMulticons 90.52 82.99 82.69 69.29 28.44 26.91 92.68 82.77 73.79 72.13 39.47 33.83
SSE (Ours) 92.88 85.27 83.61 71.90 28.08 26.36 96.53 82.88 76.08 74.52 34.19 28.17

class labels from the datasets. For experiments with
pairwise constraints, we set the number of must-link
constraints the same as cannot-link constraints to be
0.2n. For experiments with label constraints, we set
the number of positive constraints the same as negative
constraints to be 0.1n. The parameters γM and γC
control the role of constraints, we define them following
Bai et al. [1]. For a pair of data points (xi, xj) with
similarity Wij , we define γM = max(W) − Wij ,
where max(W) is the maximum similarity between all
data points. The process of constraints conversion,
constraints transitivity and entailment usually lead to
more negative values than positive values in G′. In
order to balance them, we define γC = ρ(min(W) −
Wij), where ρ is the ratio between the number of
positive values and negative values in G′, min(W) is
the minimum similarity between all data points. The
parameter ϕ balances the importance between input
data and constraints, it is empirically set as ϕ = 2.
Experimental Results. The experimental results on
five clustering datasets are presented in Table 1. Three
groups of methods, i.e., unsupervised clustering, semi-
supervised clustering with pairwise constraints, and
semi-supervised clustering with label constraints, are
compared separately. SSE with pairwise constraints
outperforms its unsupervised baseline SE on all datasets
and outperforms baseline methods in the pairwise con-
straint group on four out of five datasets. SSE with label
constraints outperforms SE on all datasets and outper-
forms baseline methods in the label constraint group on
three out of five datasets.

The experimental results on four single-cell RNA-
seq datasets are presented in Table 2. SSE with
pairwise constraints outperforms SE on three out of
four datasets and outperforms baseline methods in the
pairwise constraint group on all datasets. SSE with
label constraints outperforms SE on three out of four
datasets and outperforms baseline methods in the label
constraint group on three out of four datasets. In all,
SSE effectively incorporates prior information in the
forms of pairwise constraints and label constraints, and

achieves high clustering accuracy on both clustering
datasets and single-cell RNA-seq datasets.

4.2 Semi-Supervised Hierarchical Clustering.
In this part, we aim to evaluate the performance of
SSE on semi-supervised hierarchical clustering. We con-
duct experiments on four datasets downloaded from the
LIBSVM webpage 2 following Chierchia and Perret [6],
whose size ranges from 175 to 690. We adopt three met-
rics including Dendrogram Purity (DP) [9,27], ARI [10],
and NMI [21] for hierarchical clustering performance
evaluation. DP is a holistic measure of a cluster tree,
which is defined as the weighted average purity of each
node of the tree with respect to a ground truth labeliza-
tion of the tree leaves. We take the cluster tree of SSE
from the binary encoding tree Tb. ARI and NMI require
partitioning clustering results from the cluster trees. We
perform the compressing operator until the height of
the encoding tree is two to obtain the partitioning clus-
tering results. For other methods, we choose the largest
tree nodes from the cluster tree as the partitioning clus-
tering results. All experiments are repeated 10 times.
Baselines. We compare SSE with two unsupervised hi-
erarchical clustering methods and two semi-supervised
hierarchical clustering methods. For unsupervised hier-
archical clustering methods, we consider structural en-
tropy minimized by stretching operator and compress-
ing operator (SE [19]) and sublinear time graph-based
hierarchical clustering (SpecWRSC [13]). For semi-
supervised hierarchical clustering methods, we con-
sider merging-based active clustering (COBRA [23])
and closed pattern mining based semi-supervised con-
sensus clustering (SemiMulticons [28]).
Implementation Details. We construct graph G
from the given dataset X by calculating cosine simi-
larity between data points and then sparsify it into a 5-
nearest-neighbor graph by retaining 5 significant edges
from each node. We generate 0.2n must-link constraints
and 0.2n cannot-link constraints randomly for all meth-

2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Figure 3: Performance of SSE for semi-supervised hierarchical clustering with different constraint amounts.

ods except for COBRA, for which we generate 0.2n
positive constraints due to its requirements. We set
γM = max(W)Wij and γC = ρ(min(W)Wij). The
parameter ϕ is set to be 2.
Experimental Results. The experimental results of
semi-supervised hierarchical clustering are presented in
Table 3. SSE achieves the highest DP values and out-
performs SE in terms of DP on all datasets, indicating
that the cluster trees of SSE have the highest holistic
quality. The ARI and NMI values of SSE are compa-
rable with baselines and higher than SE on three out
of four datasets. In all, SSE achieves high clustering
accuracy on semi-supervised hierarchical clustering.

4.3 Sensitivity Analysis. The number of con-
straints has a great impact on the performance of semi-
supervised clustering and a larger number of constraints
is usually thought to lead to better performance. We
evaluate the performance of SSE for partitioning clus-
tering with different amounts of pairwise constraint, as
shown in Figure 2. The ARI and NMI values are gener-
ally larger with more constraints except for OpticalDig-
its. For this dataset, SSE makes too many clusters when
the constraints are more than 0.6n, leading to poor per-
formance. The cause of this problem is that the merging
stage in Algorithm 1 stops earlier than expected, which
calls for a better optimization algorithm. We also eval-
uate the performance of SSE for hierarchical clustering
with different amounts of pairwise constraint, as shown
in Figure 3. The growth of DP values can be barely
seen, since the DP values of all amounts of constraint
are very high. The ARI and NMI values grow a lot with
more constraints provided. In all, SSE performs better
with more constraints under most circumstances.

5 Related Work
Semi-supervised clustering methods incorporate prior
information into the process of clustering to enhance
clustering quality and better align user preferences, and
have attracted great interest in recent years. Prior
information can take different forms of constraints,
among them pairwise constraints and label constraints
are mostly used. Pairwise constraints indicate whether
a pair of data points should be in the same cluster
or not [18]. Many methods that incorporate pairwise
constraints have been proposed, such as semi-supervised
spectral clustering [1], semi-supervised NMF clustering
[25], and semi-supervised density peak clustering [20].
Label constraints reveal class labels of some data points,
specifying whether they belong to certain classes or
not. These constraints can be used through label
propagation [17] or penalizing violated data points [4].

6 Conclusion
In this paper, we propose SSE, a novel and more general
semi-supervised clustering method that can integrate
different types of constraints. We give a uniform formu-
lation of pairwise constraints and label constraints and
make them both compatible with SSE. Moreover, SSE
can perform both semi-supervised partitioning cluster-
ing and hierarchical clustering, thanks to the structural
entropy measure that it is based on. We conduct exten-
sive experiments on nine clustering datasets and com-
pare SSE with eleven baselines, justifying the superior-
ity of SSE on high clustering accuracy. We also apply
SSE to four single-cell RNA-seq datasets for cell clus-
tering, demonstrating its functionality in biological data
analysis. Future work on SSE may focus on better op-
timization algorithms.
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